Este sitio web utiliza cookies para mejorar su experiencia mientras navega. Las cookies que se clasifican según sea necesario se almacenan en su navegador, ya que son esenciales para el funcionamiento de las características básicas del sitio web. También utilizamos cookies de terceros que nos ayudan a analizar y comprender cómo utiliza este sitio web. Estas cookies se almacenarán en su navegador solo con su consentimiento. También tiene la opción de optar por no recibir estas cookies. Pero la exclusión voluntaria de algunas de estas cookies puede afectar su experiencia de navegación.
9788441551763

Haz clic en la imagen para ampliarla

DATOS

EAN: 9788441551763
Editorial: ANAYA MULTIMEDIA
Páginas: 256
Encuadernación: Rústica
Tamaño: 155mm X 230mm
Peso: 386 gr

GUÍA PRÁCTICA DE LA IA

Autor Siegel, Eric

Sin stock

Novedad. Próxima publicación

27,50 €

26,13 €

La mejor herramienta es la más difícil de utilizar. El machine learning es la tecnología de uso general más importante del mundo, pero es muy complicada de lanzar. Fuera de los gigantes tecnológicos y algunas otras empresas líderes, las iniciativas de machine learning suelen fallar a la hora de implementarse y nunca llegan a aportar valor. ¿Qué falta? Una práctica empresarial especializada apta para una adopción amplia.

En la Guía práctica de la IA, el autor superventas Eric Siegel presenta el estándar de referencia, un modelo práctico en seis pasos para llevar los proyectos de machine learning desde su concepción hasta su implementación. Ilustra la práctica con historias de éxito y fracaso, incluyendo casos prácticos reveladores de UPS, FICO y empresas puntocom destacadas. Este enfoque disciplinado sirve para ambas partes: da poder a los profesionales empresariales y establece un marco de trabajo estratégico muy necesario para los profesionales de los datos.

Además de detallar la práctica, este libro también mejora las cualificaciones de los profesionales empresariales de forma indolora. Ofrece una dosis vital pero amable de conocimiento contextual semitécnico que todas las partes interesadas necesitan para dirigir o participar en proyectos de machine learning de principio a fin. Esto pone a los profesionales empresariales y los de datos en igualdad de condiciones para que puedan colaborar de manera conjunta y profunda para establecer con precisión lo que debe predecir el machine learning, cómo de bien predice y cómo se actuará en función de sus predicciones para mejorar las operaciones. Estas cuestiones esenciales determinan el éxito o el fracaso de cada iniciativa; si se hacen bien, allanan el camino para la implementación dirigida al valor del machine learning.

Productos Relacionados:

9788441548169

9788441548961

9788441551831

9788441549258

Categorías